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Abstract 
Salt marshes are hotspots of nutrient processing en route to sensitive coastal environments. While 
our understanding of these systems has improved over the years, we still have limited knowledge of 
the spatiotemporal variability of critical biogeochemical drivers within salt marshes. Sea-level rise will 
continue to force change on salt marsh functioning, highlighting the urgency of filling this 
knowledge gap. Our study was conducted in a central California estuary experiencing extensive 
marsh drowning and relative sea-level rise, making it a model system for such an investigation. Here 
we instrumented three marsh positions subjected to different degrees of tidal inundation (6.7%, 
8.9%, and 11.2% of the time for the upper, middle, and lower marsh positions, respectively), 
providing locations with varied biogeochemical characteristics and hydrological interactions at the 
site. We continuously monitored redox potential (Eh) at depths of 0.1, 0.3, and 0.5 m, subsurface 
water levels (WL), and temperature at 0.7 m depth at each marsh position. To understand how 
drivers of subsurface biogeochemical processes fluctuate across tidal cycles, we used wavelet 
analyses to explain the interactions between Eh and WL. We found that tidal forcing significantly 
affects key drivers of biogeochemical processes by imparting controls on Eh variability, likely driving 
subsurface hydro-biogeochemistry of the salt marsh. Wavelet coherence showed that the Eh-WL 
relationship is non-linear, and their lead-lag relationship is variable. We found that precipitation 
events perturb Eh at depth over timescales of hours, even though WL show relatively minimal 
change during events. This work highlights the importance of high-frequency in situ measurements, 
such as Eh, to help explain factors that govern subsurface biogeochemistry and hydrological 
processes in salt marshes. 
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1. Abstract 

Salt marshes are hotspots of nutrient processing en route to sensitive coastal environments. 
While our understanding of these systems has improved over the years, we still have limited 
knowledge of the spatiotemporal variability of critical biogeochemical drivers within salt marshes. 
Sea-level rise will continue to force change on salt marsh functioning, highlighting the urgency of 
filling this knowledge gap. Our study was conducted in a central California estuary experiencing 
extensive marsh drowning and relative sea-level rise, making it a model system for such an 
investigation. Here we instrumented three marsh positions subjected to different degrees of tidal 
inundation (6.7%, 8.9%, and 11.2% of the time for the upper, middle, and lower marsh positions, 
respectively), providing locations with varied biogeochemical characteristics and hydrological 
interactions at the site. We continuously monitored redox potential (Eh) at depths of 0.1, 0.3, and 
0.5 m, subsurface water levels (WL), and temperature at 0.7 m depth at each marsh position. To 
understand how drivers of subsurface biogeochemical processes fluctuate across tidal cycles, we 
used wavelet analyses to explain the interactions between Eh and WL. We found that tidal forcing 
significantly affects key drivers of biogeochemical processes by imparting controls on Eh variability, 
likely driving subsurface hydro-biogeochemistry of the salt marsh. Wavelet coherence showed that 
the Eh-WL relationship is non-linear, and their lead-lag relationship is variable. We found that 
precipitation events perturb Eh at depth over timescales of hours, even though WL show relatively 
minimal change during events. This work highlights the importance of high-frequency in situ 
measurements, such as Eh, to help explain factors that govern subsurface biogeochemistry and 
hydrological processes in salt marshes. 

1.2 Introduction 

Coastal wetlands are dynamic hydrologic systems where terrestrial groundwater, terrestrial 
surface water, and seawater mix. These systems play an important role in global biogeochemical 
cycles, promoting both carbon storage and nitrogen removal, in part due to the saturated conditions 
resulting from frequent inundation (Valiela and Cole, 2002; Giblin et al., 2013; Reading et al., 2017). 
Despite the importance of the dynamic hydrology in marshes, the bi-directional hydrologic 
interaction between terrestrial and marine sources is poorly understood. 

Currently, one of the biggest impediments to developing robust water quality knowledge in 
coastal wetlands is an incomplete understanding of short-time dynamics and a lack of sampling at 
timescales over which nutrients are removed, retained, and transported. A first step towards 
improving this understanding is to determine the time scales at which surface-subsurface hydrologic 
interactions occur in salt marshes, as hydrologic forcing is likely an important driver of nutrient 
cycling and overall biogeochemistry (Guimond et al., 2020b; Guimond and Tamborski, 2021). 
Documenting the current temporal variability of these interactions and associated nutrient 
concentrations will further aid in predicting future conditions in these dynamic coastal systems 
under a changing climate (Crotty et al., 2020; Buffington et al., 2021).  

Available nutrients and other biogeochemical parameters in salt marshes are usually limited 
to synoptic, irregular sampling, or long-term but coarse resolution such as monthly time series 
(Reading et al., 2017). Further, hydrologic forcing like storms and tidal inundation, which drive 
biogeochemical parameters, are short-lived, episodic events that may be missed by coarse resolution 
sampling. Although recent efforts have focused on measuring nutrient concentrations at high 
temporal resolution using sensors (Birgand et al., 2016; Messer et al., 2019; Liu et al., 2020), these 
remain uncommon due to the difficulty and high costs associated with collecting these datasets. A 
promising solution to studying rapid temporal hydrological and biogeochemical variations in salt 



marshes is to use continuous in situ redox potential (Eh) measurements. Eh describes the energetic 
favorability of a reaction and indicates the dominant geochemical conditions or potential for carbon 
loss via oxidation. For example, high Eh values are indicative of aerobic or oxygenated conditions. 
In situ Eh measurements are comparatively easy and cheap to collect (Wallace et al., 2019; Guimond 
et al., 2020a), and using several probes can help capture the extensive spatial variability in salt marsh 
systems with respect to surface-subsurface hydrologic interactions.  

Eh variability in salt marshes has been linked to sediment characteristics, temperature, and 
hydrologic forcing (Vorenhout et al., 2004), but hydrology has been shown to be the most significant 
control on Eh as it is related to oxygen availability (Ensign et al., 2008). This is because surface 
waters (or waters in contact with the atmosphere) have relatively high dissolved oxygen (DO) levels 
compared to subsurface water. DO is an important indicator of water pollution as it is critical for 
aerobic respiration (Boyd, 2000). Low DO levels are commonly found in wetlands as they are 
subjected to frequent submersion and contain abundant decomposing organic material (Hammer 
and Bastian, 1989; Steinmuller and Chambers, 2019; Orduña-Gaytán et al., 2022). Further, previous 
work has shown that Eh can be an indicator of hydrological processes. Eh has been used to 
represent localized advective oxygen transport in forested wetlands as high Eh represents oxygen-
rich flow paths (Lahiri and Davidson, 2020). Three-dimensional monitoring of Eh showed that high 
Eh conditions persist along high-permeability preferential flow paths where oxygenated surface 
water can easily flow in a shallow riparian aquifer (Wallace and Soltanian, 2021). Additionally, tidal 
inundation in coastal environments were observed to have a strong relationship with denitrification 
rates and consequently Eh variations (Ensign et al., 2008). Therefore, combining high-resolution in 
situ Eh measurements with inundation extent can be used to evaluate the frequency at which 
biogeochemical processes occur and the timescale at which porewater and subsurface water interact 
in these salt marsh systems. 

Because biogeochemical processes in salt marsh porewater are complex, nonlinear, and 
rapid, changes to measured Eh can simultaneously signal the influence of multiple drivers, such as 
water level. Wavelet analysis has been shown to be useful for carrying out this timescale analysis of 
water chemistry parameters (Kumar and Foufoula-Georgiou, 1997; Arora et al., 2016). Wavelet 
transform is used to decompose a time series signal into time and frequency domains simultaneously 
(Foufoula-Georgiou and Kumar, 1994; Torrence and Compo, 1998). Because of this capability of 
time-frequency localization, wavelet analyses can determine discontinuities, seasonal trends, and 
long-term patterns in the time series (Daubechies, 1992). For example, wavelet analysis has been 
used with diverse hydrologic parameters to study runoff generation in response to timing and 
magnitude of precipitation (Kantelhardt et al., 2003; Partal, 2012). Wavelet transforms of 
temperature were also used to identify hotspots of submarine groundwater discharge (Henderson et 
al., 2008). Moreover, this method has been used to understand redox dynamics and solute 
concentrations in a diversity of settings, from a municipal landfill site to a uranium-contaminated 
Department of Energy field site (Martínez and Gilabert, 2009; Arora et al., 2013, 2016). In coastal 
environments, wavelet transform has been applied to periodic water quality measurements to assess 
the area’s environmental health over several years (Venkatesh et al., 2021). In addition, wavelets were 
used on continuous Eh data in a tidal river to assess hydrologic forcing on biogeochemistry over 
different timescales (Wallace et al., 2019). 

Given this technique's strengths and applicability, we use wavelet transform of continuous 
Eh and shallow subsurface water level measurements. To advance understanding of the 
spatiotemporal variability of hydrological and biogeochemical processes in coastal systems, we 
address the following questions: 



1- Is there spatiotemporal variability at intra/intertidal scales in salt marsh subsurface hydrology and 
biogeochemistry? 

2- What is the role of seasonal climatic factors, such as precipitation, for salt marsh 
biogeochemistry? 

3- What are the drivers of redox conditions and their role in subsurface hydrology? 

2. Methods 

2.1 Site Description 

This study was conducted at the Elkhorn Slough National Estuarine Research Reserve in 
Monterey, California (Figure 1A). The Mediterranean climate of Elkhorn Slough has pronounced 
wet/dry seasonal dynamics, which provide an ideal setting to understand the diel and seasonal 
variations in climatic forcing that impact subsurface inundation and biogeochemical conditions. 
During this study (Feb 2020-March 2021), air temperature varied between 0.3 oC and 35.4 oC, while 
water temperature ranged between 10.7 oC and 19.1 oC. Water levels were also variable, ranging 
between 0.57 m above the ground surface (during high tides, 2.17 m amsl) and 0.24 m below the 
ground surface (1.35 m amsl), reflecting the daily tidal inundations. Water levels during the study 
period had a mean, median, and standard deviation of 1.58 m amsl, 1.58 m amsl, and 0.09 m amsl, 
respectively. Total precipitation over the study period totaled 396.8 mm. 

Our work focused on a 25 m experimental transect in an emergent wetland (Figure 1A, black 
star). The site was delineated into upper, middle, and lower marsh positions through elevation 
surveys and inundation extents, with an elevation difference of 0.24 m over a 24 m profile (Figure 
1D). The elevations above mean sea level of each marsh position are 1.79 m, 1.65 m, and 1.55 m for 
the upper, middle, and lower marsh, respectively. These elevations are inundated 6.7 %, 8.9 %, and 
11.2 % of the time, respectively, based on water level data collected at the site between February 
2019 and February 2021. These wetland positions coincide with previous delineations of salt 
marshes across the Elkhorn Slough estuary based on vegetation coverage by elevation (Woolfolk 
and Labadie, 2012), and thus, are representative of the estuary. Native pickleweed (Salicornia pacifica) 
dominates the marsh area (Van Dyke and Wasson, 2005), underlain by partially decomposed organic 
soils. For this study, we focus on temporal variations in Eh from these three locations that have 
distinct inundation regimes, vegetation activity/coverage, and micro-topography and that are 
representative of common/dominant landscape positions found across emergent wetlands at 
Elkhorn Slough. 

We analyzed soil bulk density at depth in each marsh position at 0.05 m intervals (Figure 
1B). The density measurements showed an increase in density from the surface down to 30 cm 
depth, where the bulk density was highest (Figure 1D). From 30 cm depth down to 50 cm, the bulk 
density of the soil decreased to values similar to the surface. Bulk density decreased from the upper 
marsh to the lower marsh position (Figure 1D). 

We developed a network of co-located observation wells at each marsh position to study 
water fluctuations across the site (Figure 1D). We installed the wells to a depth of 0.7 m by pushing 
the PVC pipe directly into the ground to minimize gaps around the pipe, which could cause artificial 
water movement vertically along the well's annulus. The wells were screened from 0.05 m below the 
surface to the bottom of the well and water level and temperature were recorded with Solinst 
pressure transducer loggers (Ontario, Canada) at 5-minute intervals. Air pressure was also measured 



in the transect at 5-minute intervals to barometrically correct the water pressure measurements. For 
simplicity, the water level and temperature were averaged at hourly intervals.  

We installed Eh probes (Paleo Terra, Amsterdam, Netherlands) next to each observation 
well (~1 m apart) to capture the range of Eh fluctuations over tidal and seasonal cycles and use them 
to indicate the possible dominant biogeochemical processes occurring at different time scales. The 
Eh probes consist of fiberglass-epoxy tubes embedded with an array of 3 platinum electrodes and a 
reference electrode filled with a potassium chloride solution used as a standard for the 
measurements (Figure 1C). Eh was measured at 0.1, 03, and 0.5 m depths below the ground surface 
(Figure 1D). Measurements were recorded at 1 min intervals between March 1st, 2020 and February 
26th, 2021. We calculated the variance over the course of the study period for the Eh time series to 
control for measurement drifts. Similar to other data, these time series were also averaged to hourly 
intervals. Eh values were not corrected for pH. In addition, we installed a deep piezometer at 3.5 m 
below the surface in an upland location (in the same profile but ~8 m from the salt marsh, Figure 
1B), with no influence from the daily tides. The piezometer was completed with a 0.15 m screen at 
the bottom. We continuously measured water level in this piezometer at 5 minute intervals to 
monitor fluctuations in the regional terrestrial groundwater level and evaluate the potential for fresh 
subsurface water to move laterally towards the salt marsh. 

 

Figure 1 A) Map of Elkhorn Slough with the extent of wetlands outlined in light blue. The black star 
marks the location of the study transect. B) Map view of the experimental transect showing the location of the upland 
monitoring piezometer in relation to the salt marsh transect. C) Labeled diagram of the redox probe and reference 
electrode used for this project. D) Illustration of the experimental transect showing the spatial distribution of the redox 
(Eh) probes and observation wells with a contour plot overlay of sediment bulk density across the salt marsh. The 
darker the colors in the contour plot, the greater the bulk density (highest around 30 cm at all three marsh positions). 

2.2 Ancillary Data 



Eh is related to the concentration of different redox pairs in the soil, and oxygen is the first 
acceptor that plays a critical role in Eh variability (Vorenhout et al., 2004). Although oxygen is 
introduced into the soil through diffusion and radial oxygen loss in the rhizosphere (Adema and 
Grootjans, 2003)(Koop-Jakobsen and Wenzhöfer, 2015). Thus, we expected that tidal processes 
(described above) and weather conditions would be the dominant drivers of Eh in the soil. To 
account for weather-driven oxygen inputs, we included hourly meteorological data, obtained from 
the Elkhorn Slough Meteorological Station (Figure 1A) in our study. The station is managed and 
maintained by the National Estuarine Research Reserve System (NERR, 2022). Our analyses used 
relative humidity, barometric pressure, precipitation, wind speed, total photosynthetically active 
radiation, and air temperature. These parameters associated with weather conditions have been 
observed to explain Eh variability in non-tidal inundated systems, mainly a paddy field (Minamikawa 
and Sakai, 2007) and also in waterlogged peats (Haavisto, 1974).  

To further study the role of vegetation on Eh, we included hourly potential 
evapotranspiration (ET). ET was obtained from the California Irrigation Management Information 
System (CIMIS), which is maintained by the California Department of Water Resources (DWR). ET 
is estimated using the Penman-Monteith equation (Allen et al., 1998). DWR manages a station within 
5 km of our experimental transect (Station 129; 36.902779, -121.74193). CIMIS produces estimates 
of reference ET based on hydroclimatic data measured at their stations. 

Monthly vegetation surveys were conducted across the experimental transect between 
October 2020 and September 2021. We used these surveys as a proxy to explore the potential 
controls of plant productivity on Eh. As mentioned above, pickleweed is the predominant marsh 
vegetation along our transect. Measurements of pickleweed canopy height, percent live cover, and 
percent total cover were made over two replicate 0.5 m by 0.5 m plots at each marsh position (n=6). 

Considering that animal burrows directly affect salt marsh production, hydrology, and 
biogeochemistry (Crotty et al., 2020; Guimond et al., 2020a), we used monthly surveys of crab activity 
between October 2013 and August 2018 in Elkhorn Slough (Beheshti et al., 2021) as a proxy for crab 
activity in our study. The crab activity study was conducted across the whole estuary and not limited 
to our transect. Further, crab counts were performed monthly. Therefore, these data were 
considered as a proxy for seasonal crab activity. Pachygrapsus crassipes is the dominant marsh crab in 
Elkhorn Slough (Beheshti et al., 2022), with burrow densities often over 200 per m2 in lower marsh 
positions (Beheshti et al., 2022). Additionally, burrowing by P. crassipes has been shown to have a 
significant negative effect on bulk density and belowground biomass (Beheshti et al., 2022). Evidence 
from a concurrent study showed that in the marsh interior, burrowing by P. crassipes hastens marsh 
recovery, likely due to improved drainage that ameliorate stressors associated with ponding, such as 
anoxia or sulfide toxicity (Beheshti et al. 2022). Total catch per unit effort (i.e., four pit-fall traps 
surveyed per 2 m by 1 m plot of marsh) were used to evaluate seasonal changes in crab activity and 
study their relationship with seasonal changes in Eh. Trapping data was conducted along the marsh 
edge of tidal creeks (n=5) that span from the mid to upper reaches of the estuary (Beheshti et al., 
2022).  

3. Methodology 

Redox reactions often show significant spatiotemporal variability (Vorenhout et al., 2004, 
2011; Guimond et al., 2020a). High frequency Eh measurements can explain factors that govern 
subsurface biogeochemistry and hydrological processes in salt marshes. The use of principal 
component analysis, correlations, or other statistical techniques to examine biogeochemical data sets 



cannot always recognize the processes driving this variability as they lack the ability to incorporate 
temporal changes (Nezlin et al., 2009).  

In coastal systems affected by sea-level rise, there is a growing need to constrain 
biogeochemical processes to predict future scenarios (Ward et al., 2020). Continuous wavelet 
transform (CWT) is a promising tool for timescale analysis of water quality and hydrodynamics. 
CWT has been used to explain variabilities in water quality in coastal estuaries (Venkatesh et al., 
2021). However, Venkatesh et al. (2021) used monthly samples of water quality, which allowed them 
to explain long-term variabilities, such as processes driving annual changes. The short-term 
variability of hydrological and biogeochemical processes, at time-scales over which nutrients are 
transformed, has been less studied. Recently, (Regier et al., 2021) used wavelet coherence on sub-
hourly water level and salinity measurements to understand hydrologic connectivity between tidal 
creeks and floodplains in coastal systems. They found temporal variation in the lateral and vertical 
connectivity between the two, with neap tides controlling lateral connectivity, particularly during the 
dry season, and vertical connectivity dominated during spring tides. Our study uses a similar high-
frequency measurement. However, in addition to improving our understanding of the hydrologic 
functioning of the shallow subsurface in the salt marsh, we linked the hydrologic processes to short-
term variability in Eh. Here we explain variability in Eh, a key driver of biogeochemical processes, at 
time scales that can resolve the effects of tidal forcing in salt marsh subsurface hydrology and 
geochemistry. This application of CWT is significant as it can help identify potential control points, 
hot spots, and hot moments in marsh nutrient transformations. Therefore, the aim of the wavelet 
analyses was to 1) extract the complex linkages among biogeochemical drivers (e.g., Eh) and other 
environmental factors (e.g., subsurface hydrology); and 2) identify the temporal scales at which they 
exert dominant control using CWT, which has been found to be a powerful analytical tool 
(Alexander et al., 2020).  

3.1 Wavelet Analysis 

As suggested above, we used wavelet analysis to analyze the measured Eh patterns and 
identify dominant scales of variability across the three studied marsh positions. In particular, we 
used multilevel decomposition to understand the hydrologic processes dictating patterns of 
biogeochemical drivers at different timescales. 

3.1.1 Time-frequency processing 

Wavelet transform is one of the most commonly used time-frequency analysis techniques for 
studying multiscale, nonstationary processes over spatial and temporal scales (Addison, 2005; 
Beecham and Chowdhury, 2010). CWT is obtained by decomposing the data D(t) with a wavelet 

function 𝜓(t) and creating wavelet coefficients W that designate the relationship among the wavelet 
function and the data: 

𝑊𝐷(𝑎, 𝑏)  =  ∫ 𝛹𝑎,𝑏
∗ (𝑡)𝐷(𝑡)𝑑𝑡

∞

−∞
     (1.1) 

where t is time, * is the complex conjugate of the wavelet function, illustrated by: 

𝛹𝑎,𝑏(𝑡) =
1

√𝑎
𝛹(

𝑡−𝑏

𝑎
), 𝑎 > 0, −∞ < 𝑏 < ∞     (1.2) 

where a is the scale parameter that determines the dilation or contraction, and b is the shift 
parameter that dictates the location of the wavelet. The flexibility of the wavelet to be stretched and 
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translated in both time and frequency domains helps identify patterns across different time scales 
(Kumar and Foufoula-Georgiou, 1997). The wavelet must satisfy three central properties: 

1- zero mean, ∫ 𝛹(𝑡)𝑑𝑡 = 0
∞

−∞
; 

2- unit energy, ∫ 𝛹2(𝑡)𝑑𝑡 =
∞

−∞
1;  

3- conservation of energy during transformation (Daubechies, 1992). 

Several wavelet functions have been described in the literature. Here, we used the Morlet 
wavelet to derive the dominant frequencies from the Eh time series data. The Morlet wavelet is 
suitable for feature extraction because it is well localized in space and time (Grinsted et al., 2004), 
and it has been used in similar datasets (Arora et al., 2013; Wallace et al., 2019; Venkatesh et al., 2021). 
This wavelet has complex and real elements and facilitates identifying and fine-tuning the significant 
frequencies (Hariprasath and Mohan, 2008). 

3.1.2 Local and Global Wavelet 

The modulus of the wavelet coefficient is applied to produce a continuous-time power 

spectrum 𝑝𝐷(𝑎, 𝑏)described as: 

𝑝𝐷(𝑎, 𝑏) = 𝑊𝐷(𝑎, 𝑏)𝑊𝐷
∗(𝑎, 𝑏)  =  |𝑊𝐷(𝑎, 𝑏)|2   (1.3) 

This wavelet power spectrum is helpful as it produces the time-series variance in the 
frequency and time domains (Guan et al., 2011). The global wavelet can be obtained by calculating 
the mean of the local power spectrum along the time axis (Torrence and Compo, 1998): 

𝑊2(𝑎, 𝑏)  =  
1

𝑁
∑ |𝑊𝐷(𝑎, 𝑏)|2𝑁−1

𝑛=0      (1.4) 

where N is the length of the time-series. We calculated a 95% confidence level for the global 
wavelet spectrum and the significance interval of the contours in the local wavelet, with a 
significance testing on the background spectrum. Following Torrence and Compo (1998), the 
distribution of the local wavelet at each time t and scale a is given as: 

|𝑊𝐷(𝑎,𝑏)|2

𝜎2 ⇒
1

2
𝑃𝑘𝜒2

2       (1.5) 

In (1.5), 𝜒2is the chi-square value obtained for the 95% confidence level, 𝜎2 is the variance, 
and Pk is the mean spectrum at the Fourier frequency k that corresponds to a. We used a red-noise 
background spectrum, which is obtained as (Torrence and Compo, 1998): 

𝑃𝑘 =
1−𝛼2

1+𝛼2−2𝛼𝑐𝑜𝑠(2𝜋𝑘/𝑁)
      (1.6) 

where Pk is the background spectrum for red-noise, k (= 0 … N/2) is the frequency index, 

and 𝛼 is an assumed lag-1 autocorrelation. A 95% significance level for the global wavelet was also 
calculated using a red-noise background spectrum. The spectrum of the global wavelet can also be 

fitted by a chi-square distribution of the form 
𝜒𝑣

2

𝑣
, where v (the degree of freedom) is calculated as 

(Torrence and Compo, 1998):  

𝑣 =  2√1 + (
𝑡𝑎𝑣𝑔𝛿𝑡

𝛾𝑎
)       (1.7) 



In (1.7), tavg is the number of points averaged over, 𝛾 is the empirically calculated 

decorrelation factor for the mean power across the time axis, and 𝛿𝑡 is the sampling frequency. We 
used the R software (R Core Team, 2019) package Biwavelet (Gouhier et al., 2021) for calculating the 
wavelet spectrums and the confidence intervals. We represented the edge effects of time-frequency 
(Guan et al., 2011) with a cone of influence, illustrated by the shaded region in the wavelet power 
spectrum (e.g., Figure 3), and omitted it from the analysis. 

3.1.3 Multilevel Decomposition of Redox Potential 

The multilevel decomposition (MLD) allows decomposition of a time series into a number 
of frequency bands at discrete levels of time scales. At the first step, the time series data is split into 
two, yielding the high-pass bandwidth (i.e., detailed components), and the low-pass bandwidth (i.e., 
approximate components; (Quiroz et al., 2011). Each low-pass bandwidth can continue to be 
decomposed to achieve the next level of hierarchy. This methodology, therefore, allows removing 
the noise (detailed components) and recovering the data's smoothed trend (approximate 
components) for each level. The decomposition levels are based upon the sampling frequency and 
the total length of the time series (Mallat, 1999). The detailed and approximation components are 
determined by iteratively using a high-pass filter and an associated low-pass filter, which requires 

satisfying orthonormality (Labat et al., 2004). A wavelet function 𝜓(𝑡) composes the high-pass filter 

in the wavelet transform, and its scaling function 𝜙(𝑡) determines the low-pass filter. The detailed 
(Dm) and approximation (Am) components at a given decomposition level m can be calculated as: 

𝐷𝑚(𝑡) =  ∑ 𝑊(𝑚, 𝑘)𝜓𝑚,𝑘(𝑡)∞
𝑘 = −∞      (1.8) 

𝐴𝑚(𝑡) =  ∑ 𝑆(𝑚, 𝑘)𝜙𝑚,𝑘(𝑡)∞
𝑘 = −∞      (1.9) 

where S is the scaling coefficient and k is a discrete location index. We used the Daubechies 
5 (Db5) wavelet and scaling function, which meets the orthogonality requirement. The 
approximation and detailed coefficients follow powers of two (i.e., dyadic sampling) to capture the 
natural frequencies of the Eh data set at 2, 4, 8, 16, and 32-hour scales, respectively. Although 
frequencies of interest (e.g., tidal frequencies) would be observed at ~12 and ~24-hour scales, these 
dyadic decomposition levels offer an opportunity to investigate the intertidal cycles seen in the salt 
marsh. We studied the 16 h approximation component variability and its relationship with other 
environmental parameters available for this study (see section 2.2). Specifically, we zoomed in 
around the largest precipitation event of the studied period to estimate the effects of precipitation as 
a driver of Eh. We used the Wavelet Toolbox from MatLab (The MathWorks, 2021) to obtain the 
MLD. 

3.2 Mutual Information 

In order to identify the key factors causing temporal variability in the Eh data, we chose to 
employ mutual information. The mutual information of two random variables quantifies how much 
information is obtained about one variable by observing the other variable. Unlike the correlation 
coefficient, mutual information is not limited to linear dependence (Brunel et al., 2010; Zhang et al., 
2012). Mutual information is more comprehensive and defines how different the joint distribution 
of the two variables (X, Y) is from the product of the marginal distributions of X and Y (Shannon 
and Weaver, 1949): 

𝐼(𝑋; 𝑌) = 𝐷𝐾𝐿(𝑃(𝑋,𝑌)||𝑃𝑋 ⊗ 𝑃𝑌)     (1.10) 

https://www.zotero.org/google-docs/?ZVnisD
https://www.zotero.org/google-docs/?ZVnisD
https://www.zotero.org/google-docs/?ZVnisD
https://www.zotero.org/google-docs/?ZVnisD


where X and Y are random variables (e.g., Eh, water level) with values in the 𝑋 × 𝑌 space, 
marginal distributions PX and PY, and join distribution P(X,Y). DKL is the Kullback-Leibler divergence 
(i.e., reactive entropy, (Cover and Thomas, 2006)). In our study, we used mutual information analysis 
between Eh and ET, subsurface water level in each marsh position, subsurface water temperature in 
each marsh position, terrestrial groundwater level, precipitation, and the rest of environmental 
parameters described in section 2.2 

In mutual information, the null hypothesis is that I(X; Y)=0 (i.e., the two signals are 
independent). To test the statistical significance of the analysis, we used an equal variance t-test, 
which is valid for large samples from non-normal distributions and can be used when both data sets 
consist of the same number of samples and it has been used to test the statistical significance of 
mutual information analysis (Sarkar and Pandey, 2020). We used a one-tailed test with significance 
level α = 0.0001, which corresponds to a confidence level of ~99.9%.  

Further, we normalized I(X;Y) to scale the results between 0 (no mutual information) and 1 
(perfect correlation). The normalization uses the entropy H(X) of each individual signal, and can be 
calculated as (Kvålseth, 2017; Zbili and Rama, 2021): 

𝑁𝑀𝐼(𝑋; 𝑌) =
𝐼(𝑋;𝑌)

√𝐻(𝑋)∗𝐻(𝑌)
      (1.11) 

And H(X) of the discrete random variable X is calculated from its probability (P(x)) and 
surprise (logP(x)) as: 

𝐻(𝑋) = − ∑ 𝑃(𝑥𝑖)𝑙𝑜𝑔𝑃(𝑥𝑖)
𝑛
𝑖=1      (1.12) 

4. Results 

4.1 Redox Potential Patterns in the Spatiotemporal Domain 

There was considerable spatial and temporal variability in Eh across marsh positions and 
with depth at our salt marsh transect (Figure 2). Furthermore, anaerobic conditions (Eh < 250 mV; 
(Søndergaard, 2009)) dominated the area over the study period across all marsh positions. Eh 
increased significantly with elevation, with median values of -421 mV, -404 mV, and -377 mV at the 
lower, middle, and upper marsh positions, respectively (Kruskal-Wallis test: H=9699.3, df = 2, p < 
0.001). Additionally, median Eh values varied significantly between 10 (median = -387 mV), 30 
(median = -424 mV), and 50 cm depths (median = -407 mV) (Kruskal-Wallis test: H=19639, df = 2, 
p < 0.001).  

Median Eh was highest at 10 cm and lowest at 30 cm, and this is consistent across the entire 
measurement period (Figure 2). At 10 cm, especially during the wet season (i.e., November-January), 
the oxygen delivery and consumption processes are readily seen in the Eh profiles (Figure 2). During 
this period, we observed the highest range of Eh values. At all marsh positions, Eh is relatively lower 
at 30 cm than at 50 cm, except for the middle marsh, where the Eh measurements at 50 cm were 
consistently lower, suggesting that Eh doesn’t continuously decrease with depth but rather is likely 
related to soil properties, such as bulk density (Figure 2). Further, throughout the monitoring period, 
measurements at the 50 cm depth remained somewhat spatially and temporally constant (~ -400 
mV), highlighting the lower Eh variability at depth in salt marsh sediments.  



 

Figure 2 Redox potential (Eh) contour graphs across the experimental transect. The grey, dashed lines at 10, 
30 and 50 cm indicate the Eh probe’s depth, the values in between are linearly interpolated. Soil bulk density at each 
marsh position is shown to the right of each contour plot. Precipitation time series for the studied period is shown above 
the Eh profile to illustrate the timing of storm events. 

4.2 Redox Potential Patterns in the Time-frequency Domain 

We studied the temporal variability in Eh as a result of tidal fluctuations using the Morlet 
wavelet (Figure 3). Based on the Morlet wavelet, all marsh positions and depths studied show 
dominant powers at periods of 12 h and 24 h (areas marked with black polygons in the CWT, or 
with powers above the red dashed line in the global wavelet spectrum, which mark the 95% 
confidence level, Figure 3). The significant powers at the 12 and 24 h periods coincide with the sub-
daily and daily tidal frequencies (Taniguchi, 2000), suggesting a relationship between the water level 
in the salt marsh (i.e., inundation extents) and Eh measurements.  

At 10 cm depth, significant powers at specific tidal frequencies (12 and 24 h periods in 
Figure 3, Table 1) are seasonal; significant powers start in August 2020 and stop during the winter 



months. The significant powers start earlier in the upper and middle marsh than at the lower marsh 
position. In addition to significant powers at (sub)daily tidal cycles, the CWT of the 10 cm probes 
showed significant powers at larger periods of ~708 h (29.5 days) and ~355 h (14.8 days), 
corresponding with the lunar cycles (Figure 3; (Taniguchi, 2000)). However, significant powers at 
these frequencies are not observed at other depths.  

At 30 cm, Eh measurements showed different patterns in the CWT across marsh positions. 
In the upper marsh position, the CWT shows significant powers at 12 and 24 h periods continuously 
from April through October 2020. The middle marsh position showed significant powers for a 
limited time (predominantly in summer, Figure 3, Table 1), and only the ~24 h period is significant 
in the global wavelet. In the lower marsh position, Eh displayed significant powers at tidal 
frequencies (~12 and ~24 h periods) throughout the studied period (Figure 3). No lunar cycle 
frequencies are observed at this depth. 

Table 1. Summary of periods (frequencies) at which significant powers in the Eh wavelet occur. 

 Significant Periods 

Depth (cm) Lower Marsh Middle Marsh Upper Marsh 

10 1:64 h & > 512 h  12h and 24h (tidal 
frequencies) 

12h and 24h (tidal 
frequencies), 355h and 
708h (lunar cycle) 

30 12h and 24h (tidal 
frequencies) 

24h (daily cycle) 12h and 24h (tidal 
frequencies) 

50 12h and 24h (tidal 
frequencies), 355h and 
708h (lunar cycle) 

12h and 24h (tidal 
frequencies), 355h and 
708h (lunar cycle) 

12h and 24h (tidal 
frequencies) 

 

The CWT of Eh at 50 cm displayed temporal and spatial variability. In the upper marsh, Eh 
measurements show significant powers at tidal frequencies only during some days in May, July and 
August 2020 (Figure 3). However, in the middle marsh position, significant powers at tidal 
frequencies show a gap between July and August 2020. During that period, the middle marsh 
showed significant powers at frequencies associated with the lunar cycle (Figure 3, Table 1). The 
lower marsh position also showed a gap in the significant powers of tidal frequencies, however the 
gap started in June and ended in October 2020. 



 

Figure 3 Continuous wavelet spectrum and global wavelet spectrum of Eh time series between March 2020 
and February 2021. In the wavelet spectrum, the shaded regions signify the cone of influence. The color bar signifies the 
strength of power in the wavelet spectrum. Areas surrounded by the black polygons display significant powers (within 
95% significance level). In the global wavelet spectrum, the red-dashed line is the 95% significance level using a red-
noise background spectrum. The shaded area in the 30 cm depth of the lower marsh (bottom center panel) marks the 
time of a precipitation event studied in detail in Figure 5. 

4.3 Controlling Processes 

Based on the mutual information analysis, regional terrestrial groundwater level, subsurface 
water temperature and subsurface water level in the salt marsh share the most information with Eh, 
with normalized mutual information (NMI) of 0.99, 0.98, and 0.97, respectively (Figure 4). These 
parameters are followed by air temperature and total PAR, with NMI of 0.71 and 0.63, respectively 
(Figure 4). Precipitation and Eh share low mutual information, with NMI of 0.03 (i.e., these two 
time series are somewhat independent). Here, we illustrate the results from the mutual information 
analysis only for the lower marsh position, but other marsh positions had similar results.  

The temporal variability of the 16 h approximation coefficients was graphically compared 
with the most significant parameters from the mutual information analysis to identify and temporally 
separate the processes affecting Eh’s dominant frequencies (Figure 5). Here, we zoom-in to show 
data between January 20th and February 10th, 2021, corresponding to dates around one of the few 
precipitation events of the 2021 water year in the area (Figure 5). The precipitation event totaled 
147.6 mm in 3 days with a maximum intensity of 11.2 mm/h. During this focal period, Eh and ET 
were out of phase (Figure 5A). ET ranged between 0 and 0.8 mm/h, with a mean, median, and 
standard deviation of 0.13 mm/h, 0.1 mm/h, and 0.2 mm/d, respectively. The maximum daily Eh 



value occurred at times of minimum ET (at night). Subsurface water temperature displayed a 
relatively low temporal variability, contrasting with air temperature values for the site, as would be 
expected (Figure 5B).  

 

Figure 4 Mutual information between Eh time series and other hydroclimatic parameters used to explore 
Eh’s temporal variability. All the relationships between Eh and the parameters shown in the figure are statistically 
significant (p-value <0.0001). The mutual information values are normalized by the Entropy of each individual 
signal. 

 

During the period shown in Figure 5, the lead-lag relationship between subsurface water 
level and Eh is observed to be variable. For example, the maxima in water level and Eh are in phase 
in the first two days, but the two variables are out of phase for the remaining period. The regional 
terrestrial groundwater level varied (i.e., increased) rapidly in response to precipitation events (Figure 
5B). Over the whole study period, the water table fluctuated between 1.77 m amsl (in the dry 
summer and fall season) and 2.78 m amsl (in the wet winter season), with a mean, median, and a 
standard deviation of 2.23 m amsl, 2.19 m amsl, and 0.30 m amsl, respectively. The regional 
terrestrial groundwater level is generally higher than the subsurface water level in the salt marsh. The 
regional terrestrial groundwater level is only lower than the subsurface water level during king tides 
in very dry periods.  

Note that the detailed components (d1, d3, d3, d4, and d5) represent the “noise” in data at 
each scale and were therefore removed from the analysis. This can be further confirmed from Figure 
5C where the detailed components are damped during the precipitation event, and amplified 
otherwise.  



 

Figure 5 Multilevel decomposition of Eh for the 10 cm, 30 cm, and 50 cm depths in the lower marsh 
position between January 20th and February 10th, 2021 (marked in Figure 3 by a shaded rectangle). A) shows the 
Eh approximate coefficients at 16 h, hourly precipitation (P), and hourly evapotranspiration (ET). B) shows local 
subsurface water level, air temperature, water temperature, and regional terrestrial groundwater level. C) shows the 
detailed components of Eh at dyadic scales of 2 (d1), 4 (d2), 8 (d3), 16(d4), and 32 (d5). The shaded region marks 
a precipitation event that occurred in the area in late January. The dashed gray line in B) marks the elevation (amsl) 
of the salt marsh. The vertical dashed gray lines mark the beginning of every new day (midnight). 

 

4.4 Wavelet Coherence 

Overall, the results of Eh's mutual information and spectral analysis suggest that water level 
(i.e., tidal inundation) is a critical control in the temporal variability of Eh. In order to further 
describe the relationship between water level and Eh in the frequency space, wavelet coherence was 
performed. Here we show the power (modulus) and the phase (angle) for the wavelet coherence 
between water level and Eh at 30 cm in the lower marsh (Figure 6). The wavelet coherence for all 
other water levels and Eh comparisons showed similar behavior.  

Eh and subsurface water levels were significantly coherent at ~12 h and ~24 h periods 
across most of the studied period (power > 0.8 mV2 in Figure 6). The frequency of high powers 
(blue color in Figure 6) at tidal periods suggests a quasi-periodic relationship between Eh and 



subsurface water level. We also observed significant coherence at lunar cycles (14.8 and 29.5 days) 
over some periods, although more sporadic than the significant powers at tidal periods. 

The phase plot (Figure 6) showed that the lead-lag behavior of the Eh and subsurface water 
level signals was not consistent throughout the studied period. The colors (blue) highlight when the 
two signals are in phase. We observed that Eh and water levels were in phase during lunar cycles and 
sporadically at tidal frequencies (shown by a phase of 0 radians, Figure 6). During other periods, we 
observed that the signals were anti-phase (shown by phases of -3 and +3 radians, Figure 6) at tidal 
periods. The arrows indicate that the subsurface water level leads Eh at lunar cycles and only at 
times for tidal periods. Nevertheless, the wavelet coherence showed a direct relationship between 
these two variables at tidal frequencies (12h and 24h), suggesting a relative change in the Eh time 
series across tidal cycles. 

 

Figure 6 Cross wavelet analysis of subsurface water level and Eh signals at the 30 cm depth in the lower 
marsh position. The figure shows the modulus (power) and phase (angle in radians) of the wavelet cross-spectrum in the 
top and bottom panels, respectively. The power plot indicates higher coherences with blue and green colors while low 
coherence is illustrated by gray colors. In the phase shift, the 0-radian value indicates that the two time series are in 

phase while +3 radians and -3 radians indicate anti-phase (Note that the color scale actually goes from -𝜋 to +𝜋). 
Arrows pointing towards the right indicate that the time series are in phase, arrows pointing to the left indicate that the 
two time series are anti-phase, arrows pointing downward explain that the subsurface water level is leading, and arrows 
pointing upward indicate that the subsurface water level is lagging. 



 

5. Discussion 

5.1 Intertidal Processes: Implications for the Local Hydrology 

Tidal signals were observed in the Eh time series across all depths, suggesting that water 
level fluctuations influence Eh values in the salt marsh sediment. This was confirmed by CWT 
analysis that showed that Eh changed at tidal frequencies (even at depth; Figure 3), implying that 
tidal surface water interacts with porewater during high tide periods, allowing for some degree of 
exchange in water chemistry at these frequencies (12 and 24 h). 

One potential mechanism that may explain rapid water movement through the salt marsh is 
filling of pores during high tides and evapotranspirative loss during low tides (i.e., water removed 
from the salt marsh sediment via ET). However, if this were the only mechanism acting in the Eh, 
we would likely observe strong seasonality in Eh, highlighted during the summer growing season, 
when ET is higher, which we did not see (e.g., Figure 3). Pickleweed, the predominant plant in the 
salt marsh, can have a rooting depth of over 0.5 m (Meinzer, 1927) 

A second potential mechanism that may explain rapid water movement through the 
subsurface involves animal burrows. Animal burrows are abundant in these environments (S7) and 
favor porewater-tidal water exchange (Tait et al., 2016; Taillardat et al., 2019). Tidal water circulation 
through burrows was the ‘engine’ of water and solute exchange in a mangrove-dominated marsh 
(Stieglitz et al., 2013). Stieglitz et al. (2013) used Radon and Radium isotopes to calculate water 
balance fluxes, determining that water flushed through animal burrows accounted for 20% of the 
total annual river discharge in a watershed in the Great Barrier Reef, northeastern Australia.  

Our observations also agree with Breier et al. (2009), who used Radium isotopes to explain 
the subsurface hydrology in the Elkhorn Slough estuary. They suggested a relatively fast turnover 
between inundation and drainage of tidal zones of subsurface water, though their model could not 
reproduce intertidal changes. Considering that the compressibility of water is very low (Fine and 
Millero, 1973; Osif, 1988), and because the salt marsh is saturated most of the time, more water 
cannot be added to the soil without removing some water (Wong et al., 2009). This condition 
indicates a relatively high hydraulic conductivity and relatively fast circulation of porewater through 
the salt marsh platform. The exchange of this more oxygenated surface tidal water with porewater 
would lead to tidal variations in the Eh time series, highlighting the Eh-subsurface water level 
relationship. This process is complex and non-linear, with Eh and subsurface water levels displaying 
periodic changes in their lead-lag relationship (Figure 6). 

5.2 Seasonal Processes: Climatic Forcing Effects on Salt Marsh Hydrology and 
Biogeochemistry 

The effect of precipitation in the salt marsh’s subsurface water level was evident during our 
study. Although the tides primarily drive subsurface water level, the salt marsh drains between high 
and low tides (i.e., the water level is below the salt marsh surface, gray dashed line in Figure 5B, 
before the focal rain event). However, the salt marsh platform stays saturated after precipitation 
events, even during low tides, possibly due to the hydrologic forcing of the elevated terrestrial 
groundwater level. This observation suggests that precipitation water, and the corresponding 
increase in the terrestrial groundwater level (Figure 5 B), play a role in maintaining the subsurface 
water level elevated in the salt marsh. This implies that high antecedent moisture conditions, 
interpreted as periods of higher terrestrial groundwater levels, reduce the aeration of the salt marsh 



platform’s top centimeters, unlike periods in which the salt marsh drains. This process has important 
implications for carbon retention as marsh draining might enhance carbon loss from the marsh 
sediments due to increased carbon oxidation (Guimond et al., 2020a). On the other hand, aeration of 
salt marsh sediments enhance pollutant removal rates as oxygenation can increase biogeochemical 
processes, including decomposition of excess nutrients (Nivala et al., 2020). 

Seasonally, the influence of different water sources (e.g., precipitation, tidal surface water) 
and antecedent moisture conditions on Eh varied, and the use of MLD helped detect these changes 
(Figure 5). Using the approximation component, we identified changes in the Eh behavior during 
precipitation events. During rainless periods, we observed the effects of tidal forcings on the Eh 
approximated coefficient (Figure 5A). However, the tidal frequency is muted during precipitation 
events, and the Eh signal becomes relatively flat (Figure 5A). We observed this phenomenon at all 
depths and marsh positions studied. This process shows that precipitation water, which has a 
different chemical signature from tidal water, exchanges with the marsh porewater relatively fast 
after the onset of precipitation, and this is registered in the Eh measurements (Figure 5A). The 
effect of precipitation in the Eh record might be explained by increased lateral flow of fresh 
terrestrial groundwater from increased terrestrial groundwater levels during precipitation events 
(Figure 5). Although the study design does not test the specific mechanism of precipitation effects 
on Eh, the lateral flow of fresh groundwater across shallow subsurface marsh zones could also be 
driven by differences in density between fresh groundwater over saline marsh water. Additionally, 
direct, vertical infiltration of precipitation water into the salt marsh could be a significant factor. 
However, at the time scale used in this analysis (one year of hourly data), the mutual information 
cannot detect information that does not occur frequently, such as precipitation. More extended time 
series and coarser frequencies might show the effects of precipitation on Eh.  

Seasonal changes in the terrestrial groundwater level and subsurface temperature variations 
at all marsh positions also drive subsurface Eh, as suggested by the mutual information analysis 
(Figure 4). The lateral flow of groundwater and its effect on subsurface water levels in salt marshes 
have been considered in the scientific literature. For example, Menció et al. (2017) used major ions, 
nutrients and water stable isotopes to study the hydrogeological dynamics of a salt marsh, also in a 
Mediterranean climate in Catalonia, Spain. They found that groundwater contributions to the salt 
marsh were significant, and played an important role in controlling water salinity. Xie et al. (2019) 
studied the importance of precipitation on salt marsh vegetation. They showed that post-dry season 
precipitation enhanced seedling establishment by influencing the suitability of abiotic factors for 
species niches. At the same time, they found that plant–soil–rainfall interactions were nonlinear and 
likely controlled by tidal inundation. These studies highlight the important role of fresh 
groundwater-saline tidal water exchanges for salt marsh ecosystems. Our analysis shows that these 
interactions are present in our field site and that they influence Eh conditions in the subsurface.  

Notably, the mutual information analysis showed that the terrestrial groundwater level and 
Eh are closely related. This relationship is likely due to similar factors affecting both signals. For 
example, tidal forcing, which is more evident in the Eh time series, but can impart slight variations 
in the terrestrial groundwater in coastal ecosystems (Turner et al., 1997; Abarca et al., 2013). 

5.3 Redox conditions, drivers, and subsurface hydrology 

In our study, anoxic conditions dominated the transect with subtle Eh variations across most 
marsh positions. The redox conditions suggest that denitrification rates in the subsurface are 
substrate limited, with rapid consumption of nitrate occurring when nitrate is available. Previous 
studies at Elkhorn Slough have found that anthropogenic nitrate inputs are removed by 



denitrification in salt marsh sediments (Wankel et al., 2009, 2011). In systems such as Elkhorn 
Slough that receive high loads of anthropogenic inorganic nitrogen (Chapin et al., 2004), this 
reinforces the idea that salt marshes are important modulators of water quality. Furthermore, despite 
strong variability in atmospheric forcing (e.g., precipitation), we observed relatively subtle seasonal 
fluctuations in Eh, suggesting that the capacity of the marsh to rapidly remove nutrients delivered 
from surface water is consistent throughout the year and may exert an impact on surface water 
quality year-round. 

Sediment bulk density likely plays an essential role in controlling Eh variability in the 
sediment profile. Our analysis showed an overall decrease in mean Eh at each marsh position with 
increased soil density. However, the relationship between Eh and bulk density varied between marsh 
positions, perhaps due to several parameters simultaneously influencing Eh (e.g., hydrology, climate, 
biotic processes). The most significant ranges in Eh values were observed closest to the sediment-
water interface, and also, above the higher density, less permeable layer observed at the 30 cm 
depths across marsh positions (Figure 1D). This high-density layer likely reduces vertical oxygen 
transport during tidal inundations (Haberer et al., 2014), resulting in episodic steep vertical redox 
gradients (Figure 2).  

 Marsh elevation is also a likely driver of spatial variability in Eh due to difference in 
inundation extent across the marsh platform. Although the differences in inundation extent across 
the marsh positions are relatively small (S1), we found that the less inundated upper and middle 
marshes were less reducing overall as is evidenced by the higher average Eh values (Figure 2). This 
illustrates the importance of tidal inundation, including the duration of the inundation event, for salt 
marsh biogeochemistry. Specifically, tidal forcing can drive whether nitrate is removed or retained by 
regulating oxygen and substrate delivery to sediments (Zheng et al., 2016). The elevational 
differences in Eh measured in our study could potentially impact marsh function by influencing the 
dominant microbial metabolic pathways (Falkowski et al., 2008). Oxygen penetration into anoxic 
sediments promotes nitrification at relatively short timescales (Petersen et al., 1994; Hamersley and 
Howes, 2005) as an electron acceptor stimulating denitrification. However, if sediments are more 
consistently reduced, such as at the low marsh position, sulfide accumulation can inhibit 
nitrification-denitrification coupling and instead promote nitrogen retention through dissimilatory 
nitrate reduction to ammonium (DNRA) (Joye and Hollibaugh, 1995; Murphy et al., 2020). While we 
did not measure biogeochemical transformations in this study, our finding that Eh differs between 
marsh elevations is particularly significant given that sea level rise will result in more frequent 
inundation of the upper marsh, potentially transforming its functionality to mirror the current lower 
marsh. 

Overall, tidal inundation of the transect seems to be the dominant control on subsurface Eh 
across the salt marsh. Oscillatory tidewater and porewater interact within the marsh sediment, likely 
transporting oxygen and other electron acceptors to depth. Advective transport distances across 
tidal cycles are likely small, though this may depend on season. However, the continuing influence of 
oscillatory tides could heighten solute dispersion, causing a shallow vertical redox gradient that shifts 
somewhat over each tidal cycle (Wallace et al., 2019). The corresponding oscillations in Eh vertical 
gradients across positions have implications for the timing of nutrient removal and fluxes to coastal 
environments in salt marshes. Cyclic inundation and draining of porewater due to tidal forcing (or 
tidal pumping) can attenuate excess nutrients and have important water quality implications. 

6. Conclusion and Implications 



Biogeochemical parameters such as nutrients are commonly measured at monthly frequencies 
in coastal estuaries, but significant nutrient processing can occur rapidly at much shorter time scales 
(e.g., precipitation events, tidal cycles). This study investigated the variability of Eh, a critical driver 
of biogeochemical processes, at time scales that can explain intertidal and intra-tidal variations. 
Further, because Eh is linked to moisture conditions, we studied the local subsurface hydrology of a 
salt marsh using continuous, high-frequency water level measurements. Our work shows that the 
subsurface hydrology is likely dynamic with the potential for tidal surface water to exchange with 
subsurface water at intra-tidal time scales (12 and 24 h periods). This observation highlights the 
necessity to measure analytes of interest at higher frequencies to explain the critical biogeochemical 
processes dominating coastal ecosystems. 

Moreover, our analysis shows that precipitation water mutes the tidal signal observed in the 
Eh time series, indicating that precipitation disturbs subsurface Eh. This result implies a relatively 
fast exchange of precipitation water with porewater in the salt marsh. We hypothesize that the 
presence of crab burrows, which are abundant in these types of environments, allows for rapid 
porewater-surface water exchange at sub-hourly intervals. However, temporal changes in the lead-lag 
relationship between Eh and subsurface water level suggest that the relationship between these 
parameters is not linear, and instead influenced by many interlinked processes, such as terrestrial 
water levels, subsurface water temperature in the salt marsh, plant activity, etc. 

Continuous wavelet transforms revealed that salt marsh subsurface Eh varies significantly at 
frequencies corresponding to lunar cycles (14.8 and 29.5 days). During periods of higher tides, the 
surface water-porewater exchange seems to be accentuated. A future research question would focus 
on studying the biogeochemical impacts of the lunar cycles on coastal systems.  

Continuous measurements of Eh at high resolution over long periods enable understanding 
the variability and instantaneous effects of hydrologic forcing (e.g., precipitation events, tidal 
flooding) in the porewater chemistry of the salt marsh platform. Furthermore, high-resolution 
measurements permit signal analysis in the frequency domain. By implementing techniques like 
those shown here in continuous Eh data sets, subsurface conditions can be further studied by 
analyzing specific frequencies that explain the temporal variability of a time series. For example, 
wavelet analysis can aid in understanding subsurface hydrologic fluctuations as it can show the 
effects of the tides in the subsurface or highlight the changes in the time series frequency when 
other water sources are present (e.g., precipitation water). Further, wavelet analysis can help 
understand reactive transport of Eh-sensitive solutes (e.g., nitrate), particularly in dynamic 
environments such as coastal estuaries. 

As global climate shifts, factors including sea-level rise will induce changes in marsh position 
functioning and the services they provide. We used a relatively simple and robust methodology for 
evaluating key marsh processes. The methods presented here can assist in interpreting coastal 
processes, which can help with the urgency to predict future scenarios under sea-level rise 
conditions. Further, the application of these techniques has transformative influences on our 
knowledge of coupled hydrological and biogeochemical processes in marsh ecosystems. 
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